Dados Bibliográficos

AUTOR(ES) Michael P. Zumpano , Joan T. Richtsmeier
ANO 2003
TIPO Artigo
PERIÓDICO American Journal of Physical Anthropology
ISSN 0002-9483
E-ISSN 1096-8644
EDITORA Berghahn Journals (United Kingdom)
DOI 10.1002/ajpa.10125
CITAÇÕES 4
ADICIONADO EM 2025-08-18
MD5 1bfc4a37e35ea3750ae90cbca093c5d9

Resumo

This study investigates whether macaques and humans possess a common pattern of relative growth during the fetal period. The fetal samples consist of 16 male pigtailed macaques (mean age, 20.5 gestational weeks) and 17 humans (9 males and 8 females; mean age, 29.5 gestational weeks). For each individual, three‐dimensional coordinates of 18 landmarks on the skull were collected from three‐dimensional computed tomographic (CT) reconstructed images and two‐dimensional CT axial slices. Early and late groups were created from the human (early mean age, 24 weeks, N = 8; late mean age, 34 weeks, N = 9) and macaque samples (early mean age, 17.7 weeks, N = 7; late mean age, 23 weeks, N = 9). Inter‐ and intraspecific comparisons were made between the early and late groups. To determine if macaques and humans share a common fetal pattern of relative growth, human change in shape estimated from a comparison of early and late groups was compared to the pattern estimated between early and late macaque groups. Euclidean distance matrix analysis was used in all comparisons. Intraspecific comparisons indicate that the growing fetal skull displays the greatest amount of change along mediolateral dimensions. Changes during human growth are primarily localized to the basicranium and palate, while macaques experience localized change in the midface. Interspecific comparisons indicate that the two primate species do not share a common pattern of relative growth, and the macaque pattern is characterized by increased midfacial growth relative to humans. Our results suggest that morphological differences in the craniofacial skeleton of these species are in part established by differences in fetal growth patterns. Am J Phys Anthropol 120:339–351, 2003. © 2003 Wiley‐Liss, Inc.

Ferramentas