Dados Bibliográficos

AUTOR(ES) C.M. Orr , William L. Jungers , Rachel H. Dunn , M. W. Tocheri
AFILIAÇÃO(ÕES) Department of Anatomy Midwestern University Downers Grove IL 60515, Stony Brook University, Department of Anatomy Des Moines University Des Moines IA 50312, Human Origins Program, Department of Anthropology National Museum of Natural History, Smithsonian Institution Washington DC 20560
ANO 2014
TIPO Artigo
PERIÓDICO American Journal of Physical Anthropology
ISSN 0002-9483
E-ISSN 1096-8644
EDITORA Berghahn Journals (United Kingdom)
DOI 10.1002/ajpa.22451
CITAÇÕES 22
ADICIONADO EM 2025-08-18
MD5 d197224a3e45ba55f2f2bd9c74a064e4

Resumo

Gorillas occupy a variety of habitats from the west coast to eastern central Africa. These habitats differ considerably in altitude, which has a pronounced effect on forest ecology. Although all gorillas are obligate terrestrial knuckle‐walking quadrupeds, those that live in lowland habitats eat fruits and climb more often than do those living in highland habitats. Here we test the hypothesis that gorilla talus morphology falls along a morphocline that tracks locomotor function related to a more inverted or everted foot set. This proposed morphocline predicts that gorillas living in lowland habitats may have a talocrural joint configured to facilitate a more medially oriented foot during climbing, suggesting that they may be more adaptively committed to arboreality than gorillas living in highland habitats. To quantify the relative set of the foot in gorillas, we chose two three‐dimensional measurements of the talocrural joint: mediolateral curvature of the trochlea and relative surface area of the lateral malleolus. Our results show that, in comparison to their eastern counterparts, western gorillas have talar features that reflect a more medially directed sole of the foot. This morphology likely facilitates foot placement in a wider range of positions and minimization of shearing stresses across the joint when the foot is loaded on more curved or vertically oriented substrates as occurs during climbing and other arboreal behaviors. In contrast, eastern gorilla talar morphology is consistent with habitual placement of the foot with the sole directed more inferiorly, suggesting more effective loading during plantigrade push‐off on terrestrial substrates. Am J Phys Anthropol 153:526–541, 2014. © 2013 Wiley Periodicals, Inc.

Ferramentas