Dados Bibliográficos

AUTOR(ES) E.B. Kang
AFILIAÇÃO(ÕES) University of Southern California, Annenberg School for Communication and Journalism, Los Angeles, CA, USA
ANO 2023
TIPO Artigo
PERIÓDICO Big Data & Society
ISSN 2053-9517
E-ISSN 2053-9517
DOI 10.1177/20539517221146122
CITAÇÕES 8
ADICIONADO EM 2025-08-18

Resumo

There is a gap in existing critical scholarship that engages with the ways in which current 'machine listening' or voice analytics/biometric systems intersect with the technical specificities of machine learning. This article examines the sociotechnical assemblage of machine learning techniques, practices, and cultures that underlie these technologies. After engaging with various practitioners working in companies that develop machine listening systems, ranging from CEOs, machine learning engineers, data scientists, and business analysts, among others, I bring attention to the centrality of 'learnability' as a malleable conceptual framework that bends according to various 'ground-truthing' practices in formalizing certain listening-based prediction tasks for machine learning. In response, I introduce a process I call Ground Truth Tracings to examine the various ontological translations that occur in training a machine to 'learn to listen.' Ultimately, by further examining this notion of learnability through the aperture of power, I take insights acquired through my fieldwork in the machine listening industry and propose a strategically reductive heuristic through which the epistemological and ethical soundness of machine learning, writ large, can be contemplated.

Ferramentas