Dados Bibliográficos

AUTOR(ES) P.L. Reno , Mark Sinclair
AFILIAÇÃO(ÕES) Pennsylvania State University
ANO 2014
TIPO Book
PERIÓDICO Evolutionary Anthropology
ISSN 1060-1538
E-ISSN 1520-6505
EDITORA Sage Publications (United States)
DOI 10.1002/evan.21417
CITAÇÕES 10
ADICIONADO EM 2025-08-14
MD5 9A4AAE37F5E9361F0AE4642D37F72948
MD5 40755bc427312171f38654f9bf466d2d

Resumo

Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.1–4 However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan‐Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo‐devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution.

Ferramentas